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SFE541: Polymer 
Applications using 
Supercritical CO2 
 
Introduction 

Supercritical fluids have unique properties 
for the  enhanced processing of polymeric 
materials. The ability of supercritical carbon 
dioxide to swell and plasticize polymers is 
critical to the extraction, impregnation and 
modification of polymeric materials. In 
addition,  polymer plasticization reduces 
polymer viscosity and shear stresses.  
 
Supercritical carbon dioxide (scCO2) is the 
most widely used supercritical fluid for 
polymer processing.  CO2 is inexpensive, 
nontoxic, and nonflammable and has a 
relatively low critical point. In addition, CO2 
is a gas under ambient conditions which 
makes for easy removal from polymeric 
matrices. This avoids the costly processes of 
drying or solvent removal from processed 
polymers. 
 
The sorption of scCO2 into polymers results 
in their swelling and changes the 
mechanical and physical properties of the 
polymers. The most important effect is the 
reduction of the glass transition 
temperature (Tg) of glassy polymers 
subjected to scCO2, often simply called 
plasticization. 
 
This review enumerates the many 
applications of supercritical fluids for 
polymer processing. 
 
 

 

Equipment 

Applied Separations Supercritical Extraction 
Equipment  SFE Basic, SFE 2, SFE 4, 
Helix, Pilot and Production Plants. 

 

 

Applications  

( Locate  the appropriate reference for 
detailed procedures) 

Extraction of Polymers 

The low surface tension and high diffusivity 
of SC CO2 combined with polymer 
plasticization increases the rates of the 
extraction of soluble monomers, oligomers, 
and other  unreacted species from 
polymeric matrices.  
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Drying of Polymers 
 
Most organic solvents are readily dissolved 
in SC CO2 and are easily extracted from a 
polymer matrix leaving no residual solvents 
in the dried polymer. 
  

Impregnation of Polymers  

Supercritical CO2 is a solvent which can 
dissolve and carry small MW nonpolar 
compounds into a polymer and then 
precipitate the dissolved compound in the 
polymer by a reduction in pressure of the 
supercritical fluid. The CO2 gas can then 
easily diffuse out of a polymer once the 
pressure is reduced to ambient.  In addition, 
there are no solvent residues left in the 
impregnated polymer sample. 
 
Polymers which have been impregnated 
using scCO2 include:  

• Polystyrene 
• poly(methylmethacrylate) (PMMA) 
• poly(vinyl chloride (PVC) 
• polycarbonate  
• polyethylene  
• poly(tetrafluoroethylene) (PTFE) 
•  poly(chlorotrifluoroethylene) 

(PCTFE)  
• poly(4-methyl-1-pentene) (PMP) 
• nylon 
• poly(oxymethylene)  
• poly(ethylene terephthalate) (PET)  
•  poly(dimethylsiloxane) (PDMS) 
• polyimides  

 

Solutes used in impregnating polymers 
range from metal carbonyl complexes to 
organic dyes to  Alpha -Tocopherol. 

 
Polymer Blends 
SCF impregnation can be used to blend 
different  polymer species.  Monomers and 
initiators dissolved in a supercritical 
solution can partition into a different 
polymer matrix with the  subsequent 
polymerization of the monomer within the 
matrix.  The formation of  unusual polymer 
blends may be achieved using this method. 
 
Dyeing of Polymers 
Dyes typically have poor solubility in 
supercritical CO2. Therefore, the 
supercritical CO2 dyeing of polymers uses a 
different mechanism to impregnate 
polymers than the previously described 
impregnation method.  
Usually, the dye molecule has a greater 
affinity for the polymer matrix and only a 
slight solubility in supercritical CO2. In this 
situation, the dye preferentially partitions 
from the supercritical fluid into the polymer 
fibers. 
 
Crystallization of Polymers 
The phenomenon of scCO2-induced 
plasticization of glassy polymers has 
important implications for semicrystalline 
polymers. For example, scCO2-induced 
plasticization may induce crystallization in 
certain polymers. This occurs in some 
polymers when CO2- induced mobility of 
the polymer chains allows them to 
rearrange into kinetically favored 
configurations, thus forming crystallites 
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 Foaming of Glassy Polymers 
 
Plasticization of glassy polymers with high-
pressure supercritical fluids plays an 
important role in the formation of 
polymeric foams. If the polymer is 
subjected to high-pressure gas, and the 
pressure is suddenly decreased or the 
temperature is rapidly increased, the gas 
will try to escape from the polymer, causing 
anti plasticization. This rapid escape of gas 
can cause the nucleation and growth of 
bubbles within the polymer. Once a 
significant amount of gas escapes, the Tg of 
the polymer drops and, thus, “freezes” the 
foamed structure. 
 
Examples of foamed polymers 
 
Polymethyl (methacrylate) (PMMA) 
Polyethyl (methacrylate) (PEMA) 
Polycarbonate  
Poly(ethylene terephthalate) (PET)  
Polystyrene  
Glycol-modified PET (PETG)  
Polyvinylcloride (PVC)  
Polypropylene  
 polyester (polybutylene succinate) 
poly(lactide-co-glycolide) (PLGA) 
Polyimide 

Polymer Melts 

Supercritical CO2  is quite soluble in many 
molten polymers, but as described 
previously  only a few high molecular 
weight polymers are very soluble in 
supercritical CO2. 
 
The main obstacle in processing high 
molecular weight polymers is high viscosity. 
This problem may be overcome by 

increasing the temperature or by the 
addition of solvents to the polymer melt. 
Unfortunately, high temperature may 
increase polymer decomposition and 
solvent addition creates problems 
associated with separation and recovery of 
solvents from the polymer mix.  
 
Supercritical CO2 is a good replacement for 
organic solvents in handling highly viscous 
polymer melts. The dissolution of CO2 in a 
polymer causes its plasticization even at low 
temperatures. The plasticization is 
evidenced by a decrease in the glass 
transition temperature or melting point of 
the polymer which in turn results in a 
reduction in the viscosity.  
 
Thus, the use of CO2 allows for the 
processing of polymers at low temperatures 
and polymer degradation is avoided. 
 
Many of the above examples describing the 
processing of dry polymers with 
supercritical CO2 may  be replicated by 
dissolving supercritical CO2 into a melted 
polymer as an alternative operation. These 
include: polymer modifications ,polymer 
blends, polymer foaming, and particle 
formation. 

Conclusion 
In summary, supercritical fluids offer a 
solution to many problems associated with 
the processing of polymers and polymer 
melts;  including polymer extraction, drying, 
impregnation, blending, dyeing, 
crystallization and foaming without the use 
of toxic solvents. 
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